

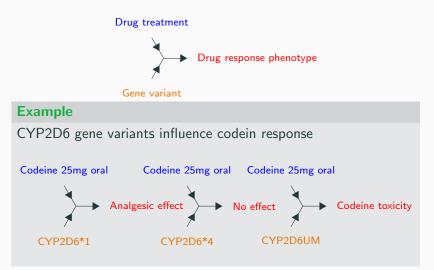
The PractiKPharma project (2016-2020)

Knowledge extraction and comparison for pharmacogenomics

October 8, 2020

Application domain: pharmacogenomics (PGx)

PGx studies the influence of genomics on individual drug response



Sources of PGx relations

Specialized databases (PharmGKB)

The biomedical litterature

Electronic Health Records (EHRs)

Sources of PGx relations

Specialized

databases

(PharmGKB)

The biomedical litterature

Electronic Health Records (EHRs)

Results: 2 open source data resources

- A manually annotated corpus: PGxCorpus
- A PGx knowledge graph: PGxLOD

Knowledge extraction

Motivation:

- Most of PGx knowledge is available in the literature
- State-of-the-art methods for relation extraction are supervised
- Few small annotated corpora exist involving PGx entities

Approaches:

- Build manually a corpus for PGx relations
- Combine transfer learning and our domain specific corpus

PGxCorpus [Legrand et al., 2020]

A manually annotated corpus of **PubMed abstracts**

- all three PGx key entities annotated (Genomic factors, Drugs and Drug response phenotype)
- their relationships

Summary:

- 11 annotators involved
- 8 months
- 945 sentences, 6,761 entities, 2,875 relations

PGxCorpus: demonstrated utility

- Baseline experiments
 - Named entity recognition (NER) with a classical CNN [Collobert *et al.* 2011]
 F-measure (macro) = 71.93%
 - Relation Extraction (RE) with a Multi-Channel CNN [Quan *et al.*, 2016]

F-measure (macro) = 54.04%

- 2019: BERT came!
 - RE with BERT + fine-tuning with PGxCorpus
 F-measure = 78.44 %

PGxCorpus is available and open (CC A-NC 4.0)

• The corpus, annotation guidelines, code of baseline experiments:

https://github.com/practikpharma/PGxCorpus/

- The brat server to browse the corpus: https://pgxcorpus.loria.fr/
- The data descriptor manuscript ([Legrand et al., 2020]): https://www.nature.com/articles/s41597-019-0342-9

• Useful to study other NLP task: n-ary relation extraction, discontinuous entity recognition

Knowledge comparison

PGxLOD: a platform for the comparison of PGx knowledge

Many **PGx key entities** (genetic factors drugs, drug responses phenotypes) from public databases DrugBank, SIDER ...

Plus PGx relations from:

Sources of PGx relations

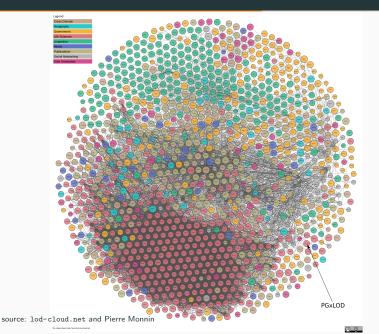
Specialized databases (PharmGKB)

The biomedical litterature (PubMed abstracts)

EHRs mining (not automated)

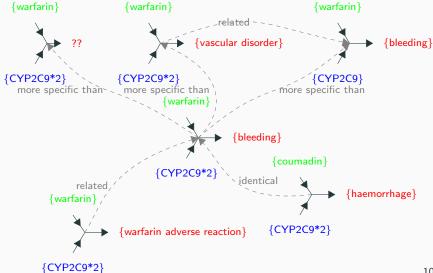
Available online at http://pgxlod.loria.fr

PGxLOD: a platform for the comparison of PGx knowledge



Concept	Number of instances
Drug	63,485
GeneticFactor	494,982
Phenotype	65,133
PharmacogenomicRelationship	50,435
from PharmGKB	3,650
from the literature	36,535
from EHR studies	10

PGx relations are heterogenously represented



1: Reconciliation rules [Monnin et al., 2020]

Example of reconciliation rule $\forall i \in \{1, ..., n\}, \ \pi_i(r_1) = \pi_i(r_2) \Rightarrow \texttt{owl:sameAs}(r_1, r_2)$

2: Graph embedding for comparison of *n*-ary relations [Monnin et al., 2019b]

Graph Embedding [Cai et al., 2018]

converts graph structures into a d-dimensional space, in which graph properties are preserved as much a possible;

captures a similarity with more flexibility than rules, deal with noise, missing mappings \ldots

Sources of PGx relations

- Still very challenging to extract knowledge automatically from EHRs
- Two promising open resources
 - **PGxCorpus**, a manually annotated corpus: https://pgxcorpus.loria.fr/
 - **PGxLOD**, an open knowledge graph for PGx: https://pgxlod.loria.fr/

Thank you for your attention

Acknowledgments

Loria, Nancy

- Joël Legrand
- Pierre Monnin
- Walid Hafiane
- Amedeo Napoli
- Chedy Raïssi
- Miguel Couceiro
- Yannick Toussaint

Lirmm, Montpellier

- Clément Jonquet
- Andon Tchechmedjiev

Hospital Georges Pompidou

- Bastien Rance
- William Digan

Cai, H., Zheng, V. W., and Chang, K. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng., 30(9):1616–1637.

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks.

CoRR, abs/1609.02907.

References ii

Legrand, J., Gogdemir, R., Bousquet, C., Dalleau, K., Devignes, M.-D., Digan, W., Lee, C.-J., Ndiaye, N.-C., Petitpain, N., Ringot, P., Smaïl-Tabbone, M., Toussaint, Y., and Coulet, A. (2020). **PGxCorpus, a manually annotated corpus for**

pharmacogenomics.

Scientific Data , 7(3).

Monnin, P., Couceiro, M., Napoli, A., and Coulet, A. (2020). **Knowledge-Based Matching of n-ary Tuples.** In Alam, M., Braun, T., and Yun, B., editors, *25th International Conference on Conceptual Structures, ICCS 2020*, volume Lecture Notes in Computer Science of Ontologies and Concepts in Mind and Machine - 25th International Conference on Conceptual Structures, ICCS 2020, Bolzano, Italy, September 18–20, 2020, Proceedings, pages 48–56, Bolzano, Italy. Springer.

- Monnin, P., Legrand, J., Husson, G., Ringot, P.,
 - Tchechmedjiev, A., Jonquet, C., Napoli, A., and Coulet, A. (2019a).

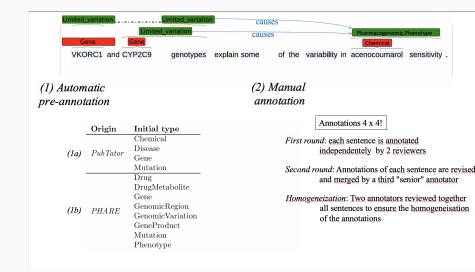
PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison.

BMC Bioinformatics, 20-S(4):139:1–139:16.

Monnin, P., Raïssi, C., Napoli, A., and Coulet, A. (2019b). Knowledge Reconciliation with Graph Convolutional Networks: Preliminary Results.

In Alam, M., Buscaldi, D., Cochez, M., Osborne, F., Recupero, D. R., and Sack, H., editors, *DL4KG2019 -Workshop on Deep Learning for Knowledge Graphs*, volume CEUR Workshop Proceedings, Portoroz, Slovenia.

Annotation process



Application to pharmacogenomic knowledge: results

		PGKB (sd)	PGKB (ca)	Literature	EHRs
Links from	PGKB (sd)	166	0	0	0
Rule 1	PGKB (ca)	0	10,134	0	0
Encoded by	Literature	0	0	122,646	0
owl:sameAs	EHRs	0	0	0	0
Links from	PGKB (sd)	0	5	0	0
Rule 2	PGKB (ca)	5	1,366	0	0
Encoded by	Literature	0	0	16,692	0
skos:closeMatch	EHRs	0	0	0	0
Links from	PGKB (sd)	87	3	15	0
Rule 3	PGKB (ca)	9,325	605	42	0
Encoded by	Literature	0	0	75,138	0
skos:broadMatch	EHRs	0	0	0	0
Links from	PGKB (sd)	20	0	0	0
Rule 4	PGKB (ca)	0	110	0	0
Encoded by	Literature	0	0	18,050	0
skos:relatedMate	ch EHRs	0	0	0	0
Links from	PGKB (sd)	100,596	287,670	414	2
Rule 5	PGKB (ca)	287,670	706,270	1,103	19
Encoded by	Literature	414	1,103	1,082,074	15
skos:related	EHRs	2	19	15	0

Preliminary experiments with Graph Convolutional Networks [Kipf and Welling, 2016]

Predicates (\mathcal{R})	378
PGx relationships	68,686
└→ Nodes in their 3-hop neighborhood	2,943,613
↓ Edges in their 3-hop neighborhood	32,773,429
Similarity links between PGx relationships	283,248
→ owl:sameAs links	109,226
$ \downarrow $ skos:broadMatch links	136,264
$ \downarrow $ skos:relatedMatch links	37,758

- Training set: $\frac{2}{3}$ Test set: $\frac{1}{3}$
- 3-layer network
- Embeddings in \mathbb{R}^{10}
- Training during 60 epochs with Adam optimizer